Achieving MILP feasibility quickly using general disjunctions

نویسندگان

  • Hanan Mahmoud
  • John W. Chinneck
چکیده

Branch and bound algorithms for Mixed-Integer Linear Programming (MILP) almost universally branch on a single variable to create disjunctions. General linear expressions involving multiple variables are another option for branching disjunctions, but are not used for two main reasons: (i) descendent LPs tend to solve more slowly because of the added constraints, so the overall solution time is increased, and (ii) it is difficult to quickly find an effective general disjunction. We study the use of general disjunctions to reach the first MILP-feasible solution quickly, showing for the first time that general disjunctions can provide speed improvements for hard MILP models. The speed-up is due to new and efficient ways to (i) trigger the inclusion of a general disjunction only when it is likely to be beneficial, and (ii) construct effective general disjunctions very quickly. Our empirical results show performance improvements versus a state of the art commercial MILP solver.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mixed-Integer Linear Representability, Disjunctions, and Variable Elimination

Jeroslow and Lowe gave an exact geometric characterization of subsets of R that are projections of mixed-integer linear sets, a.k.a MILP-representable sets. We give an alternate algebraic characterization by showing that a set is MILP-representable if and only if the set can be described as the intersection of finitely many affine Chvátal inequalities. These inequalities are a modification of a...

متن کامل

Experiments with Branching using General Disjunctions

Branching is an important component of the branch-and-cut algorithm for solving mixed integer linear programs. Most solvers branch by imposing a disjunction of the form“xi ≤ k ∨ xi ≥ k + 1” for some integer k and some integer-constrained variable xi. A generalization of this branching scheme is to branch by imposing a more general disjunction of the form “πx ≤ π0 ∨ πx ≥ π0 + 1.” In this paper, ...

متن کامل

Split Closure and Intersection Cuts

In the seventies, Balas introduced intersection cuts for a Mixed Integer Linear Program (MILP), and showed that these cuts can be obtained by a closed form formula from a basis of the standard linear programming relaxation. In the early nineties, Cook, Kannan and Schrijver introduced the split closure of an MILP, and showed that the split closure is a polyhedron. In this paper, we show that the...

متن کامل

Finite Disjunctive Programming Characterizations for General Mixed-Integer Linear Programs

In this paper, we give a finite disjunctive programming procedure to obtain the convex hull of general mixed-integer linear programs (MILP) with bounded integer variables. We propose a finitely convergent convex hull tree algorithm which constructs a linear program that has the same optimal solution as the associated MILP. In addition, we combine the standard notion of sequential cutting planes...

متن کامل

A computational study of the cutting plane tree algorithm for general mixed-integer linear programs

The cutting plane tree (CPT) algorithm provides a finite disjunctive programming procedure to obtain the solution of general mixed-integer linear programs (MILP) with bounded integer variables. In this paper, we present our computational experience with variants of the CPT algorithm. Because the CPT algorithm is based on discovering multi-term disjunctions, this paper is the first to present co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computers & OR

دوره 40  شماره 

صفحات  -

تاریخ انتشار 2013